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LETTER TO THE EDITOR 

Bethe-ansatz solution of the t-J model 

Sarben Sarkar 
Centre for Theoretical Studies, Royal Signals and Radar Establishment, Great Malvern, 
Worcs WR14 3PS, UK 

Received 19 January 1990 

Abstract. The I J  model for strongly correlated electron systems is mapped onto a model 
with a generalised permutation operator. For a specific value of the ratio t / J  this model 
in one space dimension is shown to be equivalent to that of Lai and can be solved by the 
Bethe ansatz. This special point corresponds to supersymmetric invariance of the Hamil- 
ton i a n . 

There is currently intense interest in the phenomenon of high-temperature superconduc- 
tivity and several theoretical models have been proposed. One is based on the belief 
that the repulsion energy U for two electrons located on the same atom is much larger 
than the bandwidth (8t) of the electrons. A natural consequence of this is that, for an 
occupation of one electron per site, the electrons are essentially localised. The energetics 
of the spin degrees of freedom S are determined by a nearest-neighbour Heisenberg 
interaction which favours some sort of antiferromagnetism. For La,CuO, and 
YBa2Cu,0b antiferromagnetic long-range order is indeed observed, although the 
introduction of sufficient doping eventually forces the NCel temperature to zero. A 
simple and very popular model (Hirsch 1985, Anderson 1988) which describes both 
the Heisenberg interaction and hopping in the presence of holes is the t-J model with 
Hamiltonian H given by 

Moreover H acts in the Hilbert space of states where no double occupancy of sites 
is allowed. Here J ( = 2 t 2 /  U )  is the exchange interaction and ( i ,  i ' )  denotes that i and 
i' are nearest-neighbour sites on a lattice whose dimensionality is as yet unspecified. 
The operator Xy destroys an electron with spin S, = U and leaves a hole at site i. The 
Heisenberg exchange interaction is only operative if the sites i and i' are occupied 
and this explains the presence of Kronecker 8-functions in (1) ( ni being the number 
of carriers at site i ) .  Since electrons have spin-f it is convenient to rewrite the exchange 
interaction in terms of Pauli spin matrices U to give 

J(si.si.-+)=aJ(ui. Ui.- l ) .  (2) 
Implicit in our discussion has been the assumption that the t-J model is related to 

the celebrated Hubbard model which also describes the effect on hopping of correlation 
energy. Indeed from degenerate perturbation theory in t /  U (Pike et a1 1990) the t-J 
model, augmented by three site-assisted hopping terms, can be derived from the 
Hubbard model. J is necessarily then much smaller than t. However, we are interested 
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in cases where J # 2 t 2 /  U and in particular J - t. From this point of view it is important 
to note that J is somewhat larger than 2t2/ U when the t-J model is derived from a 
multiband Hubbard model (Zhang and Rice 1988). The Hubbard model was solved 
in one space dimension by Lieb and Wu (1968). It is thus natural to examine whether 
the t-J model in one dimension can be solved by a similar technique. The solution 
does not follow from that of the Hubbard model both because of the assisted hopping 
terms and because J is not necessarily much smaller than t. We find that it is indeed 
possible to solve the t-J model by the Bethe ansatz. However, the solution is not so 
straightforward and goes through only for a specific choice of the ratio t /  J. 

In this letter we will give the ideas behind the Bethe ansatz solution leaving the 
details and physical consequences of the solution to a later publication. The operators 
Xo" allow us to extend the SU(2) algebra of spins to the superalgebra U(1/2) (Wieg- 
mann 1988, Cornwell 1989, Sarkar 1990). It will be helpful to introduce a harmonic 
oscillator representation of the superalgebra (Bars and Gunaydin 1983) with 

xoa = f a b t  (3) 
b being a bosonic and f" a fermionic annihilation operator. The t term can then be 
written as 

t(xP"xp:, +X~~1XPU) = c t(b,f:tf:+lb:+, + b,+,f,":,f,"b9. (4) 

Clearlyf," destroys a spin (J at site i and now we have an explicit operator bj which 
creates a state of no occupation at site i. The exchange part of H we will rewrite as 

, # 

and the summation is effective only over sites i, i + 1 which both have spins occupying 
them. It is possible to interpret (4) and as permutation operators. This is crucial 
and only possible owing to (3) which permits us to consider each site on the lattice 
as being occupied by a single particle, whether it be a boson or a spin-up (t) fermion 
or spin-down (4) fermion. The permutation operator nature of H can be easily 
established by considering three simple examples. Let us first consider a two-site lattice 
with one hole and one up-spin, a general state vector for which can be written as 

I+) = ab:f~t10)+/3b~f[t10). (6) 
10) is a vacuum but is not equivalent to a two-hole state which is given by b:b:lO). 

Now it is easy to calculate that 

HI$) = r(ab:flft10>+/3b:fSt10)) (7) 

t(b,bl+lf,"tfP,l + b,+,b:f,":lf,") = t(P;,?SI + P:,?:I) (8)  

P1,?5Y. * .fP+b:+,)lo) = &(. . .f,":,b:)lo) (9) 

For the second example we consider a two-site lattice with one up-spin and one 

and so we see that 

where 

for a lattice with any number of sites. 

down-spin. The general state can be written as 

I$> = afT'ft'lo>+Pft+fS'Io) (10) 
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and then 

HI$) = tJ(.fi'fl+lo)+PfI'f:+lo)- ~fItf:+10)-PfttfSt1O)). ( 1 1 )  

I$) =f:'f;'lo> (12) 

Similarly, for a two-site lattice with both spins in the same direction S, = a, the general 
state is 

and 
HI+)  = 0. 

Consequently we have for any size of lattice 

Pi , i+ l ( .  . .f''ff;,lo)) =. . . f f y + y O ) .  
These arguments clearly hold for lattices of higher dimension. 

For the case of the Heisenberg antiferromagnet the fact that the Hamiltonian could 
be written as a permutation operator was noticed by Bethe (1931). For the t-J model 
we have now shown a generalisation of this. 

Let us examine under what conditions the model is soluble using the Bethe ansatz. 
For a one-dimensional lattice with N sites and occupied by ( N  -2)  up-spins, one 
down-spin and one hole, we can write the state ket as 

(15) 1' t t  I + )  = c 9 X2)fl ' fSt * .  .f!:-Ifx,fxl+l * 3 b:, * - .fElO) 
XIJ2 

x, being the position of the down-spin and x2 the position of the hole. The Schrodinger 
equation is 

HI+)= El#). (16) 
The situation is simplest when x, and x2 are far apart. The coefficient of the term 

f T ' f S ' * .  . . f ~ : - l f ~ l ~ x l + l  I+ t+ * b:, . f G I O >  

in (16) gives 

E a ( x , , X ~ ) = - J ~ ( x l , x 2 ) + f J [ ( Y ( X l + 1 , X 2 ) + a ( x , - 1 , X Z ) ~  

+ t ( a (x , ,  x2 - 1 )  + a ( x l  , x2+ 1 ) ) .  (17) 
Since our purpose is to solve the model with the Bethe ansatz it would be natural 

to try the standard prescription (Andrei et a1 1983) and write 

Here P and Q are permutations belonging to Sz the permutation group over two 
objects, k j  are 'quasimomenta' to be determined, A P (  Q )  are some coefficients, and 
b(xQ) defines the sector 

x Q I  <xQ2. 
Equation (17) implies that 

E ( A , ( l )  exp[i(k,x,+kz~~:,)]+Az(l)  exp[i(k2x,+k,xz)] 

= 2 ( f J  cos k ,  + t cos k2)Al ( l )  exp[i(k,x, + k2x2)1 
+ 2 ( i J  cos k2+ t cos k1)A2(1) exp[i(k2xl+ k,x2)l 

where Q = 1 is a shorthand for Q = (;:) and Q = 2 denotes Q = (ii). 
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A similar convention is adopted for P. Equation (20) is not consistent unless 

J 
2t 
-- - 1. 

The sign of t in H can be changed at will by making the canonical transformation 

b t + ( - l ) ' b 1  

and so effectively we have the condition 

l;l= 1. 

For the Bethe ansatz method the next stage is to consider when xI and x2 are 
nearest-neighbour sites. The Schrodinger equation then implies that 

Al(2) = uI2A2(2)+ uI2A2( l )  

AI( 1) = u"A2( 1) + uI2A2(2) 

where uI2 and u12 are functions u(k,, k,) and u ( k , ,  k,) of k, and k2. The difficulty of 
obtaining a solution via the Bethe ansatz is in satisfying consistency conditions for 
these coefficients (Andrei et ai 1983). In particular we need 

u(k1, k2)u(k2,  k I ) + U ( k l ,  k 2 ) 4 k , ,  k , ) = O .  (23) 

A detailed calculation shows that this consistency condition fails to hold. 
In this particular problem we will show that the situation can be retrieved by being 

less straightforward about the application of the Bethe ansatz. Lai (1974) considered 
a problem involving a permutation operator. His permutation operators PL, when 
expressed in our notation, satisfy 

(24) P L , .  I + I f P fP:I 10) = f 2 1  f P + 10) 

PL,.,~If?") =f!+fl:Ilo). (25) 

and 

Clearly (24) differs from (14) by a minus sign. In order to emphasise this difference 
we define in the obvious fashion Py:)+I, P?:)+, and P?::+I, and also the corresponding 
Ps for our definition of the permutation operator. We then have 

- p(V)  + ~ ( 1 1 )  + p(U) 

= -(p(tT) +pelf) -p(lT) ) 
LI,I+I LI 1 + 1  LI.I+I . 

p,,1+1- 1 , 1 1 1  l . l + l  [ . # + I  

(26) 

Lai has shown that the Hamiltonian HL 

HL = -C P,,+I LI.l+I L,, l+I L!, ,+l ) -1 p:9:::1 (27) 
( O , Y ) _ C ( P ( t t )  +pCll) +p(lt) 

1, Y , I 

can be solved using the Bethe ansatz. The H that we derived from the t-J model in 
this notation is 

up to an unimportant constant. (The operator PE::, satisfies P E : L ~ ~ ; ~ : + ~ ~ o )  = 
b :+ b f 10). ) 
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The reason for the difference between PL and P is the fermionic nature off". In 
one dimension the difference between fermions and bosons is somewhat artificial and 
in fact it is possible to make a canonical Jordan-Wigner transformation to go from 
one to another. The result of such a transformation on H is 

The eigenvalues of H '  and H are the same since the transformation is canonical. For 
t = J / 2  = 1 the similarity with (27) is striking but there is a difference of an overall 
minus sign and of course the hole operator is a fermion and the spin operators are 
bosons. 

Fortunately there is a simple isomorphism between the eigenstates of H '  and H L .  
A product with any totally antisymmetric function of the coordinates of the particles 
on the lattice will convert the eigenstates of H L  into those of H ' .  Clearly the energy 
eigenvalues are the same. 

For the situation described by (15) the Schrodinger equation for HL gives the 
equations 

[2(cos k,+cos k ~ ) + l ] a ( x l , x , + l )  

= a(x I+  1, XI) + a(x1, XI + 2 )  + a(x1 - 1, XI + 1) 

and 

 CO COS kl +COS k2)+ l ]a (x I  + 1, XI) 

= a ( x ,  , x, + 1)  + ..(XI+ 1, XI  - 1) + a(x1+ 2, XI). 

In (22) 
(1 +eikl)( l  +eik2) eik, -e '% 

U12 = 1 + 2 e'', + e'(',+',) U12 = 1 + 2 eik,  + ei(k,+k,)  and 

(23) and other conditions necessary for the Bethe ansatz are satisfied. For more 
complicated situations than ( 1 9 ,  e.g. with down-spins at xI , . . . , xnI and holes at 
x , , ~ + ~ ,  . . . , x,,~+~,, the Bethe ansatz requires 

n n + n  

a(xI,.- . ,xn,+no)= p. 1 Q AF'(Q)exP[i ] = I  ~l (kP,xQj ) ]e (xQ)  (33) 
E S , ,  + , r n  

(where e(xQ) requires xQ1 < xQ2 <. . . < xO(,,,+,,,,). 
We will conclude by examining the permutation symmetric properties of the ground 

state. Lai and Yang (1971) discussed a mixture of interacting spin-f fermions and 
bosons moving in a one-dimensional continuum. Despite the considerable differences 
in detail between their model and the one discussed here, their argument for the 
permutation symmetry of a ( x , ,  . . . , x , , ~ + ~ ~ )  is independent of such details. The 
difference between our problem and that of Lai and Yang manifests itself only in their 
form of uI2 and v12 and in the fact that they have k also associated with the up-spins. 
Hence a(x I ,  . . . , x,,+,,) transforms as the irreducible representation of SN found by 
Lai and Yang. The representation may be labelled by the Young tableau 

( 2 +  no, 2"1-', 1 N - 2 n ~ - n o  ). 

We have for definiteness assumed that N - 2nL - no 3 0. 
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We may wonder as to why we could only solve the t-J model for a special ratio 
of t /  J. Is there a special symmetry? The answer is in the affirmative and the symmetry 
is the supersymmetry that we discussed earlier. A general form of H can be written as 

H = g c  (xyoxg~l+xp,olxg")+g'~ xpPxf::",+g"c xyx:,. (34) 
I I I 

(The t-J model corresponds to g = t, g'= J / 2  and g"= - J / 2 ) .  

at site i. A necessary and sufficient condition for global supersymmetry is 
XSB changes the spin /3 at site i to spin a and X y  counts whether there is a hole 

Equation (35) implies that 

which is the condition necessary for our Bethe ansatz solution. 
The Bethe ansatz equations for the energy eigenvalues can be obtained by imposing 

periodic boundary conditions on the wavefunction. They may be solved in the usual 
way by the so-called generalised Bethe hypothesis (Yang 1967, Sutherland 1968), 
details of which will be presented elsewhere. 

I would like to thank A C Hewson and N Andrei for illuminating discussions on the 
Bethe ansatz, J H Jefferson for a critical reading of the manuscript and NATO for a 
collaborative research grant. 
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